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I. Phys. A: Math. Gen. 27 (1994) 49334943.  Printed in the UK 

Time-dependent propagator with point interaction 

S Albeveriot, 2 Brzeiniakts and L D&rowski$ll 
Fakultat fiir Mathematik, Ruhr-Universim 4630, Bochum 1, Germany 

Received 21 June 1993 

Abstract. We compute the time-dependent Schriidinger propagator with a point interaction in 
dimension n < 3 including the new cases of  n = 2 and the most general interaction supported 
by a point for n = I .  We also give the small-time asymptotics for n 6 3. The case n = 2 has 
the peculiarity of involving logarithmic terms in the expansion. 

Recently the time-dependent propagator was computed explicitly for &potentials in 
dimension n = 1 (Segal 1972, Schulman 1986, Manoukian 1989) (for the corresponding 
heat kemel see Gaveau and Schulman (1986)) and n = 3 (Scarletti and Teta 1990). In 
this paper we report a similar computation for the most general local (singular) perturbation 
concentrated at one point ( x  = 0) in dimension n < 3. We also present a small-time 
asymptotic expression for the propagator. 

As a new result we treat the four-parameter family (which corresponds to a mixture 
of 6- and 8'-potentials) in dimension n = 1, and the two-dimensional case n = 2, where 
we have a double integral representation which is suitable, e.g., to exhibit explicitly the 
small-time asymptotic expansion. For completeness, we shall derive in a simpler way the 
known integral expressions for the time-dependent propagator in the case of the &potential 
for n = 1 and n = 3. 

For n = 2,3 one has a one-parameter family which can be parametrized by a E 
[-CO. 001, with a being related to the inverse scattering length (Albeverio eta! 1988). For 
n = 1 the situation is more rich and there is a four-parameter family (Chemoff and Hughes 
1993, cf also Segal 1972), characterized by the boundary conditions at x = 0: 

with w E @; a,  b.  c, d E R, satisfying IwI = 1 and ad - bc = 1 (four independent real 
coordinates). 

Two particular subfamilies: b = 0, w = a = d = 1, c = a, and c = 0, w = a  = d = 1, 
b = a, respectively, corresponding to extensions denoted usually as -A +a6 or -A +as', 
have been extensively studied, see Albeverio et al (1988). In these two cases a = foo 
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4934 A Albeserio et ul 

corresponds to the Dirichlet boundary conditions at x = 0 in the case of a &potential and 
to the Neumann conditions in the case of a #-potential. 

An equivalent characterization of the perturbed operators is provided by the Green 
function 

where 

where 

D(1) = [ b l  + (U + d)& + Cl (4) 

and 

2B(x ,  y) = u+d-w-G+(d-a-o+G) sgnx+(d-n+o-&) sgn y-(u+d-o-G) sgn(xy). 

(5) 

Above, G A ( ~ ,  y )  = G A ( ~  - y )  is the free Green function with 

1 ,-Alxl for n = 3. I,, 
and KO denoting the Macdonald function (modified Basel function of the third kind) of 
order 0. 

One easily recovers the known expressions in the case of cd and US', as then 
B ( x ,  y )  = 0. 

The perturbed spectrum (cf Albeverio er ul 1988. Chemoff and Hughes 1993) consists 
of continuous spectrum [O, CO) and the discrete spectrum with one or two simple eigenvalues 
under the folllowing conditions on the parameters: 

n = l  I-(-/$)* fo rb=O < O  
fo rb#O A - < O < A +  n = l  

fo rb#O A - < A + < O  n = l  
fororER R = Z  
f o r a 4 0  n = 3  

(7) 
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Q ( x )  = 

where 

’ [e(-x) f a ~ ( x ) l G ( c / 0 + d ) 2 ( x )  forb = 0, & < 0, n = 1 

[ e ( - x )  + w@(x)(a + b A - ) ] G A t ( x )  
[ e ( - x )  + w@(x) (a  + b A i ) ] G A : ( x )  
Gk-2. ( x )  

. ‘3(4ra)’(x) 

for b # 0. A- c 0 < A+, n = 1 
for b f 0, A- c A+ c 0, n = 1 
for 01 E R, n = 2 
for 01 < 0, n = 3 

(9) 

for n = 1 and b # 0 as 
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where, with A* defined in (S), 

+ 

and, for n = 3, as 

e-fi(lrl+lYo e-fi(Y+lxl+lY I) 
=- du . 1 

2 ~ ( 4 n u + f i )  2 f i  2 4 5  

Next, by using the fact that the inverse Laplace transform of the free Green function G*(x)  
is known to be the 'heat' kernel 

m 
sgn(xy)P(r, 1x1 + lyl) + 1 (Mte-A+U - M - )  e-'-" (13) 

0 

xP( t ,u+lx l+lu l )du  

-P@; 1x1 + lYl) - - 
2t 

lxllyl 
xP(t ;  U + 1x1 + IyI)du 

for n = 1. b # O  
e-4nau 

lxllyl 0 
for n = 3 

Sm 
. 

~ ( t ;  x )  = (4nt)-n/*e-lr12/4r (12) 

by linearity of the inverse Laplace transform, we immediately obtain the following formulae 

B o ;  x ,  y) = P ( t ,  x - y) 
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For n = 1 and b = 0, the propagator of the Schrodinger equation with a point interaction 
is given by 

C for - > O  
a + d  

where E = (C/(a + d))', "(1) 

d)'/(Sc2)), P(t ;  x )  is given by (12) and B by (5). 

zero, 

IN-x) + U 8 ( x ) l G ( ~ / ( . + d ) ) z ( X ) ,  II'P112 = - ( a b  + 
For n = 1 and b # 0 we have, depending on the position of A- < A+ with respect to 

where E+ = A:, '#&(XI = [ W x )  + w(a + bAi)e(x) lG~:(x) ,  11Y+112 = -[I + (a + 
bA+)2] / (2A+)  and Ai and M* are defined respectively by (8j and (11). 

Finally, for n = 3, we have 
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+ 
-E /"me-4r""Pr(u + 1x1 -t [y[)du 

lxl lyl 0 
for a z 0 

0 for U = 0 

(16) 

where now E = 4?raz, * ( x )  = G(4za)~(x) and l l * 1 I 2  = ?r-h-'/16. 
We note that formula (16). after integration by parts, coincides with (5) in Scarlatti and 

Teta (1990). 
Equations (14)-(16) complete the computation of @?(x,y) for all the cases in n = 1 

and n = 3. The two-dimensional case (n = 2) turns out to be more complicated and 
we do not have a method similar to that used for n = 1 or n = 3. In particular, the 
functions Ko(&lxl) do not possess a simple multiplicative proppy, which would simplify 
the second term in (2) and lead to expressions such as (13) for P(t :  x ,  y). 

Calculating directly, we write the inverse Laplace transform of the second term in (2) as 
a convolution and, using formula (64) on p 285 of Erdelyi (1954). we obtain the following 
double integral representation: 

It is convenient to give two equivalent expressions. First, after the replacement of r by tfz, 
we can write (17) as 

&t; x ,  y) = P(t; x - y) + - dz (Z - l)"-'~-" 

To the best of our knowledge, the integral over z is not known explicitly except for the case 
lx12 + JyI2 = 2[x]1y[, i.e. the case 1x1 = IyI when the points x and y are equally distant 
from the origin, at which the &potential is placed . Then (18) becomes, cf Gradshteyn and 
Ryzhik (1965), p 715, equation (7) 

where G g  is the Meijer's G-function (Gradshteyn and Ryzhik 1965, p 1068). Second, by 
the additional change of variables z + r + 1 in (18) we obtain 
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Now, by extracting the large-z behaviour 

we introduce 

r?,(z) = ezJ2TT;;Ko(z) 

which satisfies &(z)  - 1 as z + CO. Thus, (19) can be rewritten as 

a3 t”e-CL“ 

&t; x, y) = P ( t :  x - y) + (4rrtlxl ly[)-’/’exp du -. 
4t w) 

(21) 

This expression will be used later on to obtain the small-time asymptotic expansion for 
f‘(t;  x ,  y ) .  Moreover, it can be analytically continued to imagin time. Namely, the term 
containing integrals makes sense for Ret > 0. Indeed, I (r + 1)- ~ ~ r ~ - ~  I < 1-31’ for r > 1. 
In addition, it is analytic for Ret > 0 and continuous for Ret > 0. Therefore we have the 
following result. 

For n = 2 the time-dependent propagator of the Schrodmger equation with a point 
interaction is given by 

Now we shall give the small-time asymptotic expansion as t + 0 of the time-dependent 
Schrodinger propagator with a point interaction, refemng to Albeveno er ai (1994) for the 
details. We start with dimension n = 3. Define the coefficients ak+t = gw(O)/@‘(O), 
k = 1,2, .  . . ; a  E W, with 

where 

In particular we have 
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Then pt(x, y )  for n = 3,  defined by (16). has the asymptotic expansion 

To compare this with a similar expansion of the heat kernel in dimension n = 3 

we can considcr the case (Y = 0. We have 

Thus, if x is opposite to y with respect to the origin (in the sense that y = -sx for 
some s > 0 ), we have [ x l l y l f  ( x ,  y) = 0 and 

while if it is not, we have [x l ly l  + ( x ,  y )  z 0 and 

P(1: x ,  y) - P ( t ;  x - y ) .  (28) 

Therefore, we have a free propagation which is ‘perturbed‘ only when x is opposite to 
y with respect to the origin. In the Schriidinger case instead, the perturbation is always 
felt and, for a = 0, (16) consists of two terms. The (main) e s t  term corresponds in 
diagrammatic notation to a simple straight path joining x and y, while the second term 
corresponds to the broken path joining x with 0 and then with y .  Similar considerations 
can be extended to higher terms k > 2 in (25). Thus, even though the standard perturbation 
theory does not work for our operators (-A perturbed by a singular potential ‘V’ supported 
at 0), it still makes sense to regard the exact propagator as the free one plus ‘perturbative 
corrections’. 

We note that the two paths above can be viewed as classical solutions to the Newton 
equation - = -V‘V’(y(s))  0 < s < t y(0)  = x y ( t )  = y 

ds2 

(with the potential vanishing everywhere but the origin). 

conditions (1): 
Next we give the asymptotic behaviour P t ( x , y )  in dimension n = 1 with boundary 



where 

and 

isapolynomial (oforderk+j+l)in ~ l n t z / A ~ - ’ .  Here, wx,j(u) = ( u ) k # j ( U )  isapolynomial 
of order k + j (wk,,(O) = 0 for k 2 1) and #&) = 1, #k(u) = 4 k - l  @)(U + (2 - 1)/2), 
( u ) ~  = 1 and ( u ) k + l  = (U + k)(u)k for k E W. 

We conclude with some remarks. The point ,interactions in dimension n = 2 present 
some specific features with respect to the cases n = 1 or n = 3. For instance, the 
time-dependent propagator P,(x, y) does not seem to possess a simple (single) integral 
representation. Also, the small-time asymptotic expansion of P(r; x ,  y) is quite unusual. It 
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contains terms like (a - 2ln(r/(lxl + ly l ) ) ) - I ,  which are not present for n = 1 or n = 3 
(neither for n = 2 for the free case). 

This may relate to the fact that for n = 2 we always have a bound state (except the 
free case), while for n = 1 and n = 3 a bound state occurs for roughly half the parameters. 
Another feature of n = 2 is that R2 with one point ( x  = 0) ‘marked’, or removed, has the 
homotopy group nI = Z. The physical significance is that the trajectories of material points 
fall into classes labelled by their winding number around x = 0. As a consequence the path 
integral calculation should lead to a representation of the propagator as infinite sum (over 
integers) with coefficients to be determined. 

Such a calculation has been performed for the Aharonov-Bohm effect in Morandi and 
Menossi (1984). see also Berry (1980) and Edwards (1967), where one has a charged particle 
in W3 plus a thin solenoid with magnetic flux 0. As an idealization, the solenoid coincides 
with the third axis. Due to the symmetry, one can suppress the third coordinate and work in 
R2 -IO), the point 0 representing the solenoid. The relevant coefficients in the sum provide 
a representation of the homotopy group and are equal to exp(2nin6), n E 2, where 6 is 
proportional to 0. 

This particular magnetic interaction can be described by a free Hamiltonian, which 
is defined on multivalued wavefunctions obeying some non-periodic boundary conditions 
(depending on the flux) as the angle coordinate runs from 0 to 2n or, equivalently, on 
sections of a suitable line bundle over Rz - (0). The point interactions discussed in this 
paper correspond to another physical problem described by a different Hamiltonian with a 
boundary condition for the radial coordinate at 0. The physical meaning is the ‘strength’ of 
the potential concentrated at 0. Such a potential causes of effects such as scattering, time 
delay etc. With respect to the Aharonov-Bohm situation, this could be interpreted, e.g., as 
the penetrability of the solenoid which produces the magnetic flux. 

It will be interesting to combine these two distinct problems and study a general possible 
interaction between a particle and a ‘point’, representing, as an approximation, a point-like 
harrier (thin solenoid) together with a magnetic flux. ’ h o  of the ‘coupling parameters’ can 
be identified with the value of the flux and with the penetration coefficient of the solenoid, but 
in fact there should be a four-parameter family of self-adjoint extensions which, we believe, 
deserve further study. Similar remarks apply to the (idealized) double-slit experiment. 
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